A freely jointed polymer chain with bond vectors of fixed lengths

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 112349
(http://iopscience.iop.org/0305-4470/11/11/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:16

Please note that terms and conditions apply.

COMMENT

A freely jointed polymer chain with bond vectors of fixed lengths

D A Svetogorsky
Department of Physics, University of Sofia, Sofia 26, Bulgaria

Received 7 April 1978, in final form 5 May 1978

Abstract

A treatment of a macromolecule's configurational partition function, with an additional factor $g^{1 / 2}$ resulting from the momentum partition is given.

An expression for $g^{1 / 2}$ is derived in the form of multipliers, each of them depending on some neighbouring bond angles. In the case of equal bond angles $g^{1 / 2}$ can be calculated exactly.

A freely jointed chain with fixed bond vectors was first studied by Kramers (1946). In his model the polymer chain is supposed to be a set of mass points with fixed lengths between nearest neighbours. The space position of the mass points can be described either by the position vectors r_{i}, or by the internal variables: the lengths of the bond vectors l_{i}, the bond angles θ_{i} and the bond rotation angles ϕ_{i} (figure 1).

Figure 1. Part of the polymer chain. The internal variables $\left(l_{1+1}, \theta_{1+1}, \phi_{1+1}\right)$ are shown.

Let F be a function of θ_{i}, ϕ_{i}. Then, within the framework of the Kramers model, the equilibrium average of F for a macromolecule in a particular state at temperature T is given by,

$$
\begin{equation*}
\bar{F}=\frac{1}{Z} \int F(\theta, \phi) \exp \left(-\frac{\frac{1}{2} \sum_{i, j} K_{i j} P_{i} P_{i}+U(\theta, \phi)}{k T}\right) \mathrm{d} \theta \mathrm{~d} \phi \mathrm{~d} P \tag{1}
\end{equation*}
$$

where the P 's are the momenta conjugate to the angles ϕ_{i}, θ_{i} and Z is the partition function.

After integration over P_{i}, the expression for F takes the form

$$
\begin{equation*}
\bar{F}=\frac{1}{Z} \int F(\theta, \phi) g^{1 / 2} \mathrm{e}^{-U(\theta, \phi) / k T} \mathrm{~d} \theta \mathrm{~d} \phi \tag{2}
\end{equation*}
$$

g, the determinant of the matrix inverse of K, is studied by Fixman (1974) who obtains a tractable expression for g.

In the present work, using δ-functions we shall obtain the same expression in another way. Thus, it is possible for g to be calculated exactly in the case of equal bond angles. The same method has already been used by the author (Svetogorsky 1973. 1974) to study the influence of g on the end-to-end distance of the polymer chain (in the framework of the rotational isometric state approximation). Earlier, Edwards and Goodyear (1972a, 1973), investigating the dynamics of the polymer chain, also treated bond vectors of fixed lengths by the help of δ functions.

We shall not discuss the physical meaning of the Kramers model which can be found in Gö and Scheraga (1969, 1976) and Flory (1974).

The proposed method is based on the fact that the fixed distances $l_{i} \equiv\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{i-1}\right|$ imply the following constraints in the velocities:

$$
\begin{equation*}
\left(\dot{r}_{i}-\dot{r}_{i-1}\right) \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{i-1}\right)=0 \quad i=1,2, \ldots, N \tag{3}
\end{equation*}
$$

We use these relations to write the expression
$Z_{g}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathrm{d} \dot{\boldsymbol{r}}_{0} \ldots \mathrm{~d} \dot{\boldsymbol{r}}_{N} \exp \left[-\left(\sum_{i=0}^{N} \frac{m_{i} \dot{\boldsymbol{r}}_{i}^{2}}{2}\right)\right] \prod_{i=1}^{N} \delta\left[\left(\dot{\boldsymbol{r}}_{i}-\dot{\boldsymbol{r}}_{t-1}\right) \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{i-1}\right)\right]$.
The approximation used by Edwards and Goodyear (1972a) in the calculation of Z_{g} is due to the specific nature of their problem, the real dependence of Z_{g} on the bond angles is lost. Thus, taking into account the problems of conformational statistical mechanics, we use a different method.

Introducing the variables $l_{i}, \dot{\theta}_{i}, \dot{\phi}_{i}$, we obtain

$$
\begin{equation*}
Z_{\mathrm{g}}=\text { constant } \sin \theta_{1} \ldots \sin \theta_{N} g^{-1 / 2} \tag{5}
\end{equation*}
$$

Where the constant is a factor which does not depend on θ_{i}, ϕ_{i}. On the other hand Z_{8} can be calculated using the Fourier representation of the δ functions:
$\delta\left[\left(\dot{r}_{i}-\dot{\boldsymbol{r}}_{t-1}\right) \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{i-1}\right)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \Omega_{t} \exp \left\{\mathrm{i} \Omega_{l}\left[\left(\dot{\boldsymbol{r}}_{t}-\dot{\boldsymbol{r}}_{i-1}\right) \cdot\left(\boldsymbol{r}_{t}-\boldsymbol{r}_{t-1}\right)\right]\right\}$.
We are able to integrate here over all Cartesian velocities \dot{r}_{i} and Z_{g} takes the form

$$
\begin{align*}
Z_{\mathrm{g}}=\text { constant } & \int_{-\infty}^{\infty} \mathrm{d} \omega_{1} \ldots \int_{-\infty}^{\infty} \mathrm{d} \omega_{N} \mathrm{e}^{-\omega_{i}^{2}} \\
& \times \prod_{i=1}^{N-1} \exp \left[-\left(\mu_{i}^{2} \omega_{i}^{2}-2 \mu_{i+1} \cos \theta_{l+1} \omega_{i} \omega_{l+1}+\omega_{i+1}^{2}\right)\right] \mathrm{e}^{-\mu_{N}^{2} \omega_{N}^{2}} \tag{7}
\end{align*}
$$

where,

$$
\omega_{i}=l_{t} \Omega_{t} /\left(2 m_{t}\right)^{1 / 2} ; \quad \mu_{t}=\left(m_{t} / m_{i-1}\right)^{1 / 2} .
$$

Comparison of equations (5) and (7) leads to

$$
\begin{align*}
g^{-1 / 2}=\text { constant } & \prod_{i=1}^{N}\left(\sin \theta_{1}\right)^{-1} \int \mathrm{~d} \omega \mathrm{e}^{-\omega_{1}^{2}} \\
& \times \prod_{i=1}^{N-1} \exp \left[-\left(\mu_{1}^{2} \omega_{1}^{2}-2 \mu_{t+1} \cos \theta_{t+1} \omega_{i} \omega_{1+1}+\omega_{1+1}^{2}\right)\right] \mathrm{e}^{-\mu N_{N}^{2} \omega_{N}^{2}} . \tag{8}
\end{align*}
$$

Let us first discuss the case of equal masses ($\mu_{i}=1$) and bond angles $\left(\theta_{i}=\theta\right)$. In this case
using the well known method of the maximal eigenvalue for cyclic boundary conditions we have

$$
\begin{equation*}
\int \mathrm{d} \omega \prod_{i=1}^{N} \exp \left[-\left(\omega_{i}^{2}-2 \cos \theta_{i} \omega_{i} \omega_{t+i}+\omega_{i+1}^{2}\right)\right]=\lambda_{0}^{N}, \quad N \rightarrow \infty \tag{9}
\end{equation*}
$$

where λ_{0} is the maximum eigenvalue of the equation

$$
\begin{equation*}
\lambda \psi(x)=\int_{-\infty}^{\infty} K(x, y) \psi(y) \mathrm{d} y \tag{10}
\end{equation*}
$$

where

$$
K(x, y)=\exp \left[-\left(x^{2}-2 \cos \theta x y+y^{2}\right)\right]
$$

Equation (10) can be solved exactly, its eigenfunctions and the corresponding eigenvalues are

$$
\begin{align*}
& \psi_{n}(x)=\left(\frac{2 \alpha}{\pi}\right)^{1 / 4} \frac{1}{\left(2^{n} n!\right)^{1 / 2}} \mathrm{e}^{-\alpha x^{2}} H_{n}\left(x(2 \alpha)^{1 / 2}\right), \quad n=0,1, \ldots \\
& \lambda_{n}=[\pi /(1+\alpha)]^{1 / 2}[\cos \theta /(1+\alpha)]^{n}, \quad \alpha=|\sin \theta| \tag{11}
\end{align*}
$$

where H_{n} are the hermite polynomials. Therefore, up to a constant we have

$$
\begin{equation*}
g^{1 / 2 N}=\sin \theta(1+|\sin \theta|)^{1 / 2} \tag{12}
\end{equation*}
$$

In the general case for unequal θ_{i} equation (9) allows us to integrate over $\omega_{1}, \omega_{2}, \ldots$ consecutively and to obtain the following expression:

$$
\begin{equation*}
g^{1 / 2}=\text { constant } \prod_{i=1}^{N} \sin \theta_{1} V_{i}^{1 / 2} \tag{13}
\end{equation*}
$$

For the quantities V_{1} we have the following recurrence relation:

$$
\begin{equation*}
V_{i}=1+\mu_{i}^{2}-\mu_{i}^{2} \cos ^{2} \theta_{i} / V_{i-1} ; \quad V_{1}=1+\mu_{1}^{2} \tag{14}
\end{equation*}
$$

For $N \rightarrow \infty$ and ignoring the effect of the boundary conditions, V_{1} is a continued fraction. Our exact solution in the case of equal θ and equal masses allows us to evaluate its convergence. Indeed, we have, comparing (12) and (14),

$$
\begin{equation*}
1+|\sin \theta|==V_{i}(\theta)=2-\frac{\cos ^{2} \theta}{2-\frac{\cos ^{2} \theta}{2-\ldots}} \tag{15}
\end{equation*}
$$

If we want to obtain $V_{1}(\theta)$ with a given accuracy then for different values of θ we should take different numbers of terms (n) in the continued fraction. In table 1 we show the calculated n for some values of θ when the required accuracy of $V_{1}(\theta)$ is 10^{-2}.

In the general case (14) V_{1} depends on $\theta_{i,}, \theta_{i-1}, \ldots$ and it is intuitively clear that, as far as not all of the θ 's are near zero, it would suffice to take a few terms in V, to obtain a good accuracy.

Table 1. The calculated values of n with accuracy of $V_{1}(\theta) 0 \cdot 01$ for some values of θ.

$\theta(\operatorname{deg})$	0	10	20	45	60	80	90
n	23	9	5	3	2	1	0

References

Edwards S F and Goodyear A G 1972a J. Phys. A: Gen. Phys. 51188
-_ 1972b J. Phys. A: Gen. Phys. 5965
1973 J. Phys. A: Math., Nucl. Gen. 6131
Fixman M 1974 Proc. Natn. Acad. Sci. USA 713050
Flory P S 1974 Macromolecules 7381
Gö N and Scheraga H A 1969 J. Chem. Phys. 514751

- 1976 Macromolecules 9535

Kramers H 1946 J. Chem. Phys. 14415
Svetogorsky D A 1973 PhD Thesis Moscow University

- 1974 C.R. Acad. Sci., Bulg. 2731

