
A freely jointed polymer chain with bond vectors of fixed lengths

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 2349

(http://iopscience.iop.org/0305-4470/11/11/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen., Vol. 11, No, 11, 1978. Printed in Great Britain 

COMMENT 

A freely jointed polymer chain with bond vectors of fixed 
lengths 
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Department of Physics, University of Sofia, Sofia 26, Bulgaria 

Received 7 April 1978, in final form 5 May 1978 

Abstract. A treatment of a macromolecule’s configurational partition function, with an 
additional factor g’” resulting from the momentum partition is given. 

An expression for g”‘ is derived in the form of multipliers, each of them depending on 
some neighbouring bond angles. In the case of equal bond angles g’” can be calculated 
exactly. 

A freely jointed chain with fixed bond vectors was first studied by Kramirs (1946). In 
his model the polymer chain is supposed to be a set of mass points with fixed lengths 
between nearest neighbours. The space position of the mass points can be described 
either by the position vectors ri, or by the internal variables: the lengths of the bond 
vectors l i ,  the bond angles Bi and the bond rotation angles q5i (figure 1). 

tY 

Figure 1. Part of the polymer chain. The internal variables ( I , , , ,  c$,+,) are shown. 

Let F be a function of Bi, c$~. Then, within the framework of the Kramers model, the 
equilibrium average of F for a macromolecule in a particular state at temperature T is 
given by, 

where the P’s are the momenta conjugate to the angles q5i, Bi and 2 is the partition 
function. 

After integration over Pi, the expression for F takes the form 
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g, the determinant of the matrix inverse of K ,  is studied by Fixman (1974) who obtains a 
tractable expression for g. 

In the present work, using 6-functions we shall obtain the same expression in 
another way. Thus, it is possible for g to be calculated exactly in the case of equal bond 
angles. The same method has already been used by the author (Svetogorsky 1973, 
1974) to study the influence of g on the end-to-end distance of the polymer chain (in the 
framework of the rotational isometric state approximation). Earlier, Edwards and 
Goodyear (1972a, 1973), investigating the dynamics of the polymei chain, also treated 
bond vectors of fixed lengths by the help of 6 functions. 

We shall not discuss the physical meaning of the Kramers model which can be found 
i n  GO and Scheraga (1969, 1976) and Flory (1974). 

The proposed method is based on the fact that the fixed distances li = ir, - r , -  1 imply 
the following constraints in the velocities: 

(3) (i, - ii-l). (ri - rl- l )  = 0 i = 1 , 2  , . . . ,  N .  

We use these relations to write the expression 

The approximation used by Edwards and Goodyear (1972a) in the calculation of Zg 
is due to the specific nature of their problem, the real dependence of 2, on the bond 
angles is lost. Thus, taking into account the problems of conformational statistical 
mechanics, we use a different method, 

Introducing the variables i., e,, &,, u e  obtain 

( 5  1 1/2  Z, =constant sin el . . sin ONg . 

Where the constant is a factor which does not depend on e,, 4,. On the other hand Z, 
can be calculated using the Fourier representation of the 8 functions: 

1 r o t  

6[(rt--+,-1).  ( r l - r l - l ) ] = L ]  2 T  --z dR, exp{iRl[(i,-+l-l). ( r , - - r ,  (6) 

We are able to integrate here over all Cartesian velocities i, and Z, takes the form 

where, 

Comparison of equations ( 5 )  and (7) leads to 

g-1'2 = constant n (sin el)-' 1 dw e-": 
N 

2=1 

Let us first discuss the case of equal masses (pi = 1) and bond angles (ei = 6).  In this case 
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using the well known method of the maximal eigenvalue for cyclic boundary conditions 
we have 

N 

N + m  (9) 2 N dw n exp[-(w f - 2 cos 9,w,w,+. + U , ,  1 )] = A 0 ,  

where A,, is the maximum eigenvalue of the equation 
s 

M x ) -  K ( x .  Y)ClrO’)dY 

~ ( x ,  y )  = exp[-(x’- 2 cos e.ry + y 2 ) ]  

--CO 

where 

Equation (10) can be solved exactly, its eigenfunctions and the corresponding eigen- 
values are 

where H, are the hermite polynomials. Therefore, up to a constant we havt  

g1’2N = sin e ( i  + jsin (12) 
In the general case for unequal 0, equation (9) allows us to integrate over w l ,  w 2 ,  . . . 

consecutively and to obtain the following expression: 
N 

g’” = constant fl sin e , v ! / 2 .  
t = 1  

For the quantities VI we have the following recurrence relation: 

(14) 
’ 2 2  V i = l + p - - p i  COS VI = 1 +p:. 

For N CG and ignoring the effect of the boundary conditions, V ,  is a continued 
fraction. Our  exact solution in the case of equal 6 and equal masses allows us to 
evaluate its convergence. Indeed, we have. comparing (12) and (la), 

cos? e 
- cos2 0 ’  

1 + isin el = vi(e) = 2 - 
L---- 

2 - .  . . 
If we want to obtain V,(O) with a given accuracy then for different values of 0 we 

should take different numbers of terms ( n )  in the continued fraction. In table 1 we show 
the calculated n for some values of 8 when the required accuracy of V,(e)is 

In the general case (14) If, depends on U,, e,- , ,  . . . and it i s  intuitively clear that, as 
far as not all of the 8’s are near zero, it would suttict: t o  take a few terms in V, to obtain a 
good accuracy. 

Table 1. The calculated values of n wi th  accurac) ot V , ( O )  0.01 for some values of 8. 

0 (deg) 0 10 2 0  45 60 80 90 
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